This page was generated from simple/example_vector.ipynb.
Interactive online version: Binder badge.

Note

Vector plot

Demonstration of the plotting of 2D vectors

The vector plotmethod uses matplotlibs quiver and streamplot functions to create the plot. This plot method requires two variables: 'u' for the wind in x-direction, 'v' for the wind in y-direction.

Note that this method is extended by the mapvector plot method of the psy-maps plugin for visualization on the projected globe.

[1]:
import psyplot.project as psy
import xarray as xr
%matplotlib inline
%config InlineBackend.close_figures = False
import numpy as np
[2]:
x2 = np.arange(0, 2 * np.pi, .2)
y2 = np.arange(0, 2 * np.pi, .2)
x22d, y22d = np.meshgrid(x2, y2)
ds2 = xr.Dataset(
    {'u': xr.Variable(('x', 'y'), np.cos(x22d)),
     'v': xr.Variable(('x', 'y'), np.sin(y22d))},
    {'x': xr.Variable(('x', ), x2),
     'y': xr.Variable(('y', ), y2)})

The default is a quiver plot

[3]:
p = psy.plot.vector(ds2, name=[['u', 'v']], arrowsize=20.0)
../_images/simple_example_vector_4_0.png

You can also apply a colormap to the vectors via the colors formatoption. This can be one on 'u' (to use the x-direction), 'v' (to use the 'y'-direction) or 'absolute' to use the absolute length of the arrows.

[4]:
p.update(cmap='Reds', color='absolute')
p.show()
../_images/simple_example_vector_6_0.png

The vector plot method also supports stream plots through the plot formatoption.

[5]:
p.update(plot='stream', arrowsize=1.0)
p.show()
../_images/simple_example_vector_8_0.png

The main formatoptions for the vector plots are in the vector group

[6]:
p.summaries('vector')
arrowsize
    Change the size of the arrows
arrowstyle
    Change the style of the arrows
density
    Change the density of the arrows
[7]:
psy.close('all')